Indian Statistical Institute, Bangalore

M. Math. First Year, First Semester Measure theoretic probability

Final Examination Maximum marks: 100 Date: Nov. 30, 2011 Duration: 3 hours

(1) Fix a natural number n. Let $f : \mathbb{N} \to \{0, 1, 2, ..., (n-1)\}$ be the function such that $i \equiv f(i) \pmod{n}$, in other words f(i) is the reminder when i is divided by n. Let \mathcal{G}_n be the smallest σ -field on \mathbb{N} which makes f measurable. What is the number of elements in \mathcal{G}_n ?

[10]

[15]

[10]

[15]

[15]

[20]

- (2) Let (Ω, \mathcal{F}) be a measurable space. Suppose f, g are real valued Borel measurable functions on (Ω, \mathcal{F}) . Show that f + g is measurable.
- (3) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. For A_1, A_2, \ldots in \mathcal{F} , show that $\mu(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu(A_n)$.
- (4) Show that a probability distribution function on $I\!\!R$ has at most countable number of discontinuities.
- (5) Let $\{Y_n\}_{n\geq 1}$ be a sequence of random variables converging in distribution to a random variable Y as $n \to \infty$. For $n \geq 1$ take $Z_n = Y_n^2 + \frac{1}{n}$. Show that $\{Z_n\}_{n\geq 0}$ converges to Y^2 in distribution as $n \to \infty$.
- (6) Let R, S be independent random variables. Suppose R takes values in $\{-1, +1\}$ with $P(R = -1) = P(R = 1) = \frac{1}{2}$ and S has Poisson distribution with parameter $\lambda > 0$, that is, $P(S = n) = e^{-\lambda} \frac{\lambda^n}{n!}$ for n = 0, 1, 2, ...). Compute characteristic functions of R + S and R S.
- (7) State and prove weak law of large numbers for an i.i.d. sequence of random variables with finite variance.
- (8) (Bonus question) Let U_1, U_2, \ldots be a sequence of i.i.d. random variables with each U_i having uniform distribution in the interval [3, 4]. Show that

$$P\{\omega: \lim_{n \to \infty} U_n(\omega) \text{ exists }\} = 0.$$
[10]